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Abstract  

The effect of pressure on the structural and electronic parameters of zinc-blende aluminum 
phosphide crystal has been investigated using the large unit cell within the framework of 
complete neglect of differential overlap and the linear combination of atomic orbital 
approximation. Cohesive energy, indirect band gap, valence bandwidth, conduction 
bandwidth, bulk modulus, and valence charge distribution are all obtained. The calculations 
show a good agreement of lattice constant, cohesive energy, valence bandwidth, and bulk 
modulus with the experimental data. Whereas, the calculated band gap is twice the 
experimental value. That is what we expect from Hartree-Fock method. Band gap shows a 
good trend compared to theoretical values. The effect of pressure on the aforementioned 
properties is investigated. It is found that the indirect band gap, valence bandwidth, bulk 
modulus and cohesive energy increase with increasing pressure, while the conduction 
bandwidth decreases. The maximum value of pressure is taken to be 9 GPa, because beyond 
this value, the phase of AlP transforms from zinc blende phase to nickel arsenic phase. 

PACS  71.10-w, 71.15-m, 71.15. Ap, 71.15. Nc, 64.10.+h 

 

1. Introduction 
 
Aluminum phosphide (AlP) is a wide-indirect band gap semiconductor. At normal 
conditions, AlP crystallizes in the zinc-blende (zb) structure [١]. High-pressure 
experiments on this compound are difficult because of sample handling problems; 
AlP is unstable in air [2]. The zb form has been reported theoretically to be 
metastable. The zinc- blende phase is known to transform to the nickel arsenic (NiAs) 
phase at about ( )٩.٥ – ١٧  GPa [3]. Although other studies have placed this 
transformation at a somewhat smaller pressure (7- 9.3) GPa [4]. At a pressure of about 
36 GPa the NiAs phase has been reported to undergo a Cmcm–like distortion with no 
significant change in volume. The CsCl phase is a possible candidate for AlP at very 
high pressures [2]. AlP is a subject of extensive theoretical studies ranging from the 
semiempirical to the first principles methods [5] within the density functional theory 
(DFT) framework using both pseudopotential [2], and all-electron approaches. For the 
bulk phase of AlP, theoretical calculations based on the Hartree-Fock [6], and 
potential model [7] have obtained a very good description of its structural and 
electronic properties.  

    Over the last few years, the study of materials under high pressure has become 
an extremely important subject. This is primarily due to both theoretical and 
experimental developments, which have facilitated such work [8].  
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         The pressure is a continuously varying parameter that can be used in systematic 
studies of the properties of solids as a function of interatomic distances. An interesting 
phenomenon that may occur at the applied pressure is a sudden change in the 
arrangement of the atoms, i.e., a structural phase transition of atomic arrangement. 
The ultimate pressures in the experiment can lead to a reduction in the volume by a 
factor of two causing enormous changes in the inter-atomic bonding [9].  
         In the present work we study the band structure and some physical properties of 
cubic AlP under pressure using large unit cell method within complete neglect of 
differential overlap (LUC-CNDO) method [10,11]. This method has been chosen in 
the present work rather than other methods because this can be used to give reliable 
and precise results with relatively short time. 
 
 2.  Calculations 
 
We have used the large unit cell within complete neglect of differential overlap 
(LUC-CNDO) method in the linear combination of atomic orbital (LCAO) 
approximation [10] to obtain a self-consistent solution for the valence electron energy 
spectrum. The iteration process was repeated until the calculated total energy of 
crystal converged to less than 1meV. The calculations are carried out, on the 8-atom 
LUC. The positions of atoms that constitute this LUC are calculated in the program 
according to the zinc-blende structure for a given lattice constant. There are four 
electrons in average per each atom. Hence we have (32) eigenstates, two electrons per 
state, half are filled (valence band) leaving the other half empty (conduction band) in 
the ground state. We obtained the energy minima against lattice constant variation. 
        The basic idea of the large unit cell is in computing the electronic structure of the 
unit cell extended in a special manner at k=0 in the reduced Brillouin zone (k is the 
lattice wave vector). Using the linear combination of atomic orbitals LCAO, the 
crystal wavefunction in the LUC-CNDO formalism is written in the following form 
[12]:  
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where paC are the orbital expansion coefficients, the Ru is the lattice translation 

vector, and r is a position vector. The atomic orbitals used for the LCAO procedure 
form the basis set of the calculation. We expand the wave function in a set of Slater-
type orbitals (STO), that have the radial form [13]: 
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where ζ the orbital exponent. The expectation value of the electronic energy is: 
 

ΨΨΨΨ= /Hε
                                                                       (3) 

The Hamiltonian for a microcrystal consisting of N electrons may be written as: 
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where ZA is the core charge, RAB is the distance between the atoms A and B, and the 
summation is over all nuclei. The Roothaan-Hall equations can be obtained [14]: 
 

0)( =−∑ kkk pqpq
p

apq CSF ε                                                                                          (5) 

 
Fpqk represents the Fock matrix elements. Spq is the overlap integral for atomic 
function Φq and�� ΦP, and can be written as [12]: 
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       The Fock matrix elements may represent the sum of the one- and two- electron   

components:  
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λv
rsP  is the density element with the form: 
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In equation (5) if k =0 then 
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The Fock matrix elements in their final forms in the LUC-CNDO formalism are used 
in this work to be [11]: 
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For p and q on the same atomic center,  βAB is the bonding parameter and γAB is the 
average electrostatic repulsion between any electron on atom A and any electron on 
atom B, and can be written as 
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Ip and AP are the ionization potential and electron affinity respectively, and f(x) is the 
modulating function that is given by [15] 
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For the eight atoms LUC x is given by 

a

R
x ABπ

=                                                                                                                      (14)  

 

RAB is the distance between the atom A at the central lattice o and the atom B at the v 
lattice. 
       In our calculations, we have treated only valence orbitals of Al (3s23p1) and P 
(3s23p3). The coordinates of the P atoms are chosen to be (0, 0, 0); (0, 1/2, 1/2); (1/2, 
0, 1/2); (1/2, 1/2, 0) whereas the coordinates of the Al atoms are chosen to be  (1/4, 
1/4, 1/4); (1/4, 3/4, 3/4); (3/4, 1/4, 3/4); (3/4, 3/4, 1/4). 
 
3.  Results and Discussion  
 

 3.1   Choice of parameters  

The number of parameters in the LUC–CNDO method is four. These are the orbital 
exponent (ζ), the bonding parameter (β), the electronegativity of s-orbital (Es), and the 
electronegativity of p-orbital (Ep). The value of the orbital exponent determines the 
charge distribution of electrons around the nucleus in the solid 
       These parameters are varied firstly to give nearly an exact value of the 
equilibrium lattice constant, cohesive energy, indirect bandgap and valence 
bandwidth. The remaining of the output data of the programs is a result of the theory 
that is used in the present work. We found that the investigated properties are 
sensitive to the aforementioned parameters. The parameters used for AlP in the 
present work are summarized in Table 1. 

 
 

Table 1. The adjusted parameters for AlP in the zinc-blende structure. 
 

 Parameter           Al               P         

ζ 3s,3p(a.u)-1         1.4             2.0 

β (eV)                -6.0           -4.82 

E3s (eV)             9.75           24.58 

E3p (eV)             8.68          12.086 

 

3.2 The electronic and structural properties 

The second step after the choice of parameters is to examine the structural properties 
of AlP at the equilibrium lattice constant in order to test the accuracy of the cohesive 
energy, indirect bandgap, and valence bandwidth.                                                       
       Based on the total energy result, we obtained the cohesive energy (Ecoh) as 
follows: 
 

   -Ecoh=Etot/8-Efree-E0                                                                                                 (15) 
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where Etot is the total energy, Efree is the free atom sp shell energy, and E0 is the zero–
point vibration energy. In the present work Efree =115.045eV, and this value is taken 
from the ionization potential of AlP, E0= 0.057 eV, is calculated by the formula E0= 
(9/8)kВӨD (per atom) with ӨD is the Debye temperature [16], which is equal to 588 K 
[16].  
       The present value of the cohesive energy is in good agreement with the 
experimental and other calculations [16,18,19] as shown in Table 2. Figure 1 displays 
the total energy versus the lattice constant for AlP. The curve is fitted to the equation 
of state of Murnaghan [20] from which we obtained the equilibrium lattice parameter 
(a0), the bulk modulus B and its derivative0B′ , and the cohesive energy as listed in 
Table 2.  

 

 

Figure 1.  The total energy as a function of lattice constant for AlP. 

 

       The calculated structural properties of AlP, in comparison with experimental 
results and other computational results, are shown in table 2. We notice that the lattice 
parameter for the zb of AlP of 5.453Å is in good agreement with the experimental 
value of 5.451 Å [6] with an accuracy of 0.04%. For the bulk modulus, the accuracy is 
about 0.2 %. Table 2 shows that the calculated value of 0B′  is in fair agreement with 
the previous computational [4, 19] and experimental [18] results. 
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Table 2.  Structural properties of zb-AlP at zero pressure determined by LUC-CNDO 
compared to other theoretical calculations and experimental data. 

 
 

                    Present work          Computational                          Experimental 

a0 (Å)           5.453                   5.45 [2], 5.436 [19]               5.451 [6] 

Ecoh(eV)       -8.33                    -7.94 [16], -9.62 [19]             -8.34 [18]  

B (GPa)        87.8                     86.5 [4], 89 [19]                       90 [2], 86 [6] 

0B′                 3.852                   4.18 [4], 4.14 [19]                 4.34 [18]  

 

       To visualize the nature of the bond character and to explain the charge transfer 
and the bonding properties of zb-AlP, we calculate the total charge density.  The total 
valence charge densities for AlP are displayed along the Al-P bonds in the (100), 
(110), (200), and (400) planes in Figure 2. From this figure, it is apparent that the 
phosphorous ions are larger than the aluminum ions. This figure also shows the 
charge density associated with the dangling bond at the P site. Figure 2(a) shows the 
charge density of the (100) plane, where a buildup of charge density along the AlP 
bond on the plane is clearly visible. This figure reveals that LUC-CNDO calculations 
give a reasonable description of the exchange-correlation potential in regions close to 
a molecule.  
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Figure 2.   The valence charge density (in electron/Å3) of zb-AlP at zero pressure                                  
in (a) (100) plane, (b) (110) plane, (c) (200) plane, and (d) (400) plane. 

 
   3.3 The band structure and energy eigenvalues 
 
 

              The electronic band structure of a solid shows the eigenvalues associated with 
the valence and conduction bands along specific directions in the Brillouin zone. We 
will start our discussion of calculations on the band structure by the energy 
eigenvalues for AlP crystal at various high symmetry points of the Brillouin zone. The 
results are listed in Table 3. Eight atom LUC results Г and Χ points of the FCC 
Brillouin zone. They are the valence band states Г1v, Г15v, X1v, and X5v, and the 
conduction band states X1c, X5c, Г15c, and Г1c.  
       The direct bandgap in the zb structures of AlP is due to the Al 3s and P 3s orbital 
interaction, which forms the lower-energy bonding state (Γ15v) and the antibonding 
state (Γ1c). The bonding state is lowered and antibonding states is risen, relative to the 
P 3s and Al 3s orbital energies, by the same amount of s-s interaction energy in AlP. 
In zb-AlP the conduction-band minimum (CBM) is located away from the Γ point, at 
the X point. AlP has an indirect minimum gap with the CBM at X. Thus, we obtain an 
indirect bandgap (Eg

ind) of 6.6075 eV which is larger than the results of others [21, 22] 
(see Table 4 for comparison), this is, mainly, a consequence of two approximations 
made in the present calculations. First, the core structure was ignored, through some 
compensation results from using semiempirical parameters. Second, using minimal 
basis set atomic orbitals (without considering any excited levels). However, the 
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CNDO method predicts a one-electron eigenvalue band gap that is too large and 
conduction band that is much narrower than the band model values. 
       The total valence bandwidth (VBW) or the difference between the top of the 
valence band (Γ15v) and the lowest energy of valence band (Γ1v) is 13.492 eV for zb-
AlP. The obtained total valence bandwidth is in fair agreement with previous results 
as shown in Table 4. The maximum level of the valence band is splitted only by spin-
orbit interaction ∆so, giving rise to two states at the Brillouin zone centre: Γ8v and Γ7v. 
In the absence of spin orbit splitting, these levels become a triply degenerated Γ15v. 
The spin-orbit interaction ∆so is taken into account in this paper, averaging the 
theoretical results from different Refs. to be 0.06eV [21, 23, 24]. Therefore, we added 
the relativistic correction to the band gap, which is equal to ٠.٠١٩ [23]. Our work 
gives a value of the conduction bandwidth (CBW) to be 14.728 eV (table 4), but no 
experimental results are found to the CBW of the zb of AlP. 
 

Table 3.  Eigenvalues (in electron volts) at Γ and Χ high-symmetry points of 
Brillouin zone. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

                     Present Work                 Computational                 Experimental          

Γ1v                -13.492                           -11.46 [6]                          ---                         

Γ 15v            0.0                               0.0                                 0.0 

Γ1c                7.206                              3.25 [6]                             ---                            

Γ15c             8.187                            ---                                  --- 

Χ1v             -12.925                        -9.73 [6]                          ---                           

Χ5v             -12.921                         ---                                  --- 

Χ1c              6.662                           1.51 [6]                          3.63                           

Χ5c               21.39                               ---                                     --- 
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Table 4. Calculated LUC-CNDO indirect band gap, valence bandwidth, and 
conduction bandwidth of AlP compared to other theoretical calculations and 

experiments. All energies are in eV. 
 

                        Present            Computational                       Experimental 

Eg
ind                6.6075             3.73 [7], 2.77, 2.86 [ 25]        3.63 [21], 2.45 [22]  

VBW              13.492             11.46 [6]                                     ---               
CBW              14.728              ---                                               --- 

 

4 . The effect of pressure on the physical properties 

The effect of pressure on the electronic structure and other properties can be 
calculated from the present computational procedure. By the use of our calculated 
values of the bulk modulus B and its derivative0B′ , the volume change (V) with 

applied pressure was calculated using the following equation [26]: 
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P is the pressure and V0 is the equilibrium volume at zero pressure. We use pressures 
up to    9 GPa, because this structure transforms to another phase, the nickel arsenic 
phase (NiAs), when pressure exceeds nearly 9 GPa[27]. The calculated lattice 
constant as a function of pressure is shown in figure 3. 
       The pressure dependence of the bulk modulus and the cohesive energy is 
illustrated in figure 4 and figure 5, respectively. It is shown that the bulk modulus 
increases linearly with the pressure. On the other hand, the absolute value of the 
cohesive energy decreases as the pressure increases.   
 
  

.     

 

 

Figure 3.  The effect of pressure   
on the lattice constant of AlP. 

Figure 4. The bulk modulus as 
a function of pressure for AlP. 
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       The effect of pressure on the high symmetry points (Г1v ,  Г15v ,  X1v ,  X5v , X1c, 
X5c,  Г15c, and Г1c) is shown in figure 6. From this figure one can notice that the 
eigenvalues at conduction band (X5c , Г15c , Г1c , X1c) increase with pressure, whereas 
eigenvalues at valence band (X5v , X1v , Г1v ) decrease with pressure, However, the 
decrease of  X5v , X1v , and Г1v with pressure is small. 
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Figure 5. The effect of pressure on the cohesive energy of AlP. 

 

     
 

 

Figure 6. The effect of pressure on the high symmetry points in  the (a) conduction 
band (X5c , Г15c ,   Г1c , X1c) ,   and (b) valence band  (X5v , X1v , Г1v ). 

 

       Figure 7 shows the pressure dependence of the indirect band gap of the zb phase 
of AlP from the present energy band structure calculations. The indirect bandgap 
increases with the increase of pressure; because the minimum conduction energy level 
rises and the top valence energy level lowers with the increase of pressure. However, 
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in most cases the first pressure-induced phase transition corresponds to the closing of 
the bandgap and metallization of the sample. In the present work, the pressure 
derivative of the indirect bandgap is computed to be ~ 4.2 meV/GPa. 
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Figure 7.  Variation of the indirect band gap versus pressure for AlP. 

         

          The predicted effect of pressure on the conduction bandwidth and valence 
bandwidth is illustrated in Figure 8. The conduction bandwidth decreases with the 
increase of pressure, while the valence bandwidth increases with the increase of 
pressure. Our calculations give a pressure derivative of ~ -1.9 meV/GPa for the 
conduction bandwidth, and 22 meV/GPa for the valence bandwidth. 
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Figure 8.  Effect of pressure on the (a) conduction bandwidth, and (b) valence 
bandwidth. 

 
 

    5. Conclusions  
 
In this paper, a study of some properties of AlP is presented. The cohesive energy, 
lattice constant, bulk modulus, and its pressure derivative have been calculated by 
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(LUC-CNDO) method. The calculated results indicate that this model gives results in 
good agreement with the corresponding experimental results, and this shows the 
possibility of using this model in qualitative study of some materials. A reasonable 
agreement of the valence bandwidth is shown in comparison with the available 
theoretical result. However, there is a large difference between the calculated indirect 
band gap and the corresponding experimental value. The effect of pressure on these 
properties is investigated. It is found that the conduction bandwidth decreases with 
increasing the pressure, whereas the indirect bandgap, valence bandwidth, and 
cohesive energy increase with the increase of pressure. The maximum value of 
pressure is taken to be 9 GPa, because beyond this value of pressure, the phase of AlP 
transforms from zb to rock salt phase. Relativistic effect is added to the calculation of 
the band gap, also zero point energy is added to the calculation of the cohesive 
energy. Finally, this model is shown to give a good description to the charge density 
of AlP and it is expected that this method could give reliable description for other 
materials that have zinc blende and cubic structures. 
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